From Heterobimetallic Transition Metal Complexes to Linear Coordination Polymers Based on *cis*- and *trans*-L₂Pt($C \equiv CPh$)₂

Heinrich Lang and Marion Leschke

Technische Universitat Chemnitz, Fakult ¨ at f ¨ ur Naturwissenschaften, Institut f ¨ ur Chemie, ¨ Lehrstuhl Anorganische Chemie, Straße der Nationen 62, D-09111 Chemnitz, Germany

Received 6 April 2002

ABSTRACT: The reaction of cis-(2,2'-bipyridine) $Pt(C=CPh)_2$ cis- $(4,4'-dimethyl-2,2'-bipyridine)$ Pt- $(C=CPh)_2$ *and* trans- $(Ph_3P)_2Pt(C=CPh)_2$ *towards different group 11 transition-metal salts [M*⁰ *X] (M*⁰ = *Cu, Ag; X* = *inorganic ligand) to give heterobimetallic or linear oligomeric and polymeric transition metal complexes is described. Different coordination modes for* M' , PhC \equiv C, PPh₃, and X were found in these species. *The structural aspects as well as the preference for one coordination mode over another is discussed.* $@$ 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:521–533, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10097

INTRODUCTION

Bis(alkynyl) transition metal complexes of type $[M](C=CR)$ ₂ $\{[M]=(\eta^5-C_5H_4SiMe_3)_2Ti,\ldots;$ (bipy)- $[Pt], \ldots; (Ph_3P)(CO)_3$ Re; $(\eta^5-C_5H_5)Ru; \ldots; R = \text{singly}$ bound inorganic, organic, or organometallic group; $bipy = 2.2'$ -bipyridine} (type **A** molecule) can successfully be used as organometallic chelates for the preparation of a high number of heterobimetallic complexes of structural type **B** and **C**, ${[M]}(C=CR)_2$ ${M'X}$ (${M' = Cu, Ag, Fe, Ni, Co, ...; X =}$

Contract grant sponsor: Deutsche Forschungsgemeinschaft. Contract grant sponsor: Fonds der Chemischen Industrie. Contract grant sponsor: Degussa Hüls AG.

 $©$ 2002 Wiley Periodicals, Inc.

singly or chelate-bound inorganic or organic ligand), in which the respective transition metals M and M' are spanned by σ - and π -bound alkynyl groups [1,2].

In type \bf{B} species the chelated metal center \bf{M} ^{\prime} and the $[M](C=CR)_2$ unit are coplanar, while in structural type C molecules the M' atom is displaced from the plane defined by M and the alkynyl ligands $RC = C [1b]$. These structural arrangements allow to study, for example, electron-transfer between the respective transition metals along the π -conjugated organic units [1b,3–5]. In addition, they possess considerable interest in organic and organometallic synthesis $[1,2,6]$.

Since, the synthesis, reaction chemistry, structure and bonding, and physical properties of type **A–C** molecules have been reviewed lately [1b], herein we focus on recent developments made in the reaction behavior of cis- and trans-configurated bis(alkynyl) platinum complexes towards diverse group 11 transition-metal salts $[M/X]$, producing heterobimetallic Pt-M' ($M' = Cu$, Ag) species or linear oligomers and polymers thereof.

Dedicated to Amaya del Villar.

Correspondence to: Heinrich Lang; e-mail: heinrich.lang@ chemie.tu-chemnitz.de.

RESULTS AND DISCUSSION

For a better overall view this section is divided into two subsections:

- 1. Reaction chemistry of cis -[Pt](C=CPh)₂ (synthesis of bimetallic–pentametallic coordination complexes).
- 2. Reaction behavior of *trans*-[Pt](C=CPh), (preparation of linear coordination polymers).

Reaction Chemistry of cis-[Pt](C=CPh)₂

Based on heterobimetallic complexes of structural type C (complexes **4**, $M' = Cu$, and **5**, $M' = Ag$), which can be easily synthesized by the reaction of equimolar amounts of *cis*-[Pt](C=CPh)₂ { $1a$: [Pt] = (bipy)Pt, $bipy = 2,2'-bipyridine; 1b: [Pt] = (bipy')Pt, bipy' =$ 4,4'-dimethyl-2,2'-bipyridine} with the copper(I) or $silver(I)$ salts $[M'X]$ (2: $M' = Cu$, 3: $M' = Ag$; $X =$ Cl, Br, NO₂, NO₃, OTf, BF₄, ClO₄, PF₆,...; OTf = $OSO₂CF₃$),

diverse transition-metal complexes, featuring three, four, or even five metal atoms (ratio $Pt/M' = 2:1$, 2:2, 3:2), are accessible by controlling both the stoichiometry and the reaction conditions [1,2,7–16].

When the molar ratio of **1** and **2** or **1** and **3** is changed from 1:1 to 2:1 then trimetallic complexes of type $[\{cis-[Pt](C\equiv CPh)_2\}$ ₂M']X (M' = Cu: **6a**, $[Pt]$ = $(bipy)Pt, X = BF_4$; **6b**, $[Pt] = (bipy')Pt, X = BF_4$. $M' =$ Ag, $[Pt] = (bipy)Pt: 7a, X = BF_4$; **7b**, $X = ClO_4$; **7c**, $X = PF_6$. $M = Ag$, $[Pt] = (bipy')Pt$: **7d**, $X = BF_4$; **7e**, $X =$ $ClO₄$; **7f**, $X = PF₆$) are formed in which the respective group 11 metal centers M' are chelate-bound by two cis -[Pt](C=CPh)₂ units [12,14].

Selected species of the latter type were characterized by X-ray structural analysis [12,14]. The cation $[{[Pt](C=CPh)_2}]_2M'^{-}$ is formed by two cis - $[Pt]$ ($C = CPh$), units that are nearly orthogonal positioned to each other and are connected through M', which is π -bound by all four PhC \equiv C building blocks with a linear $Pt-M'$ arrangement. The tendency that in heterobimetallic {*cis*- [Pt](C CPh)2}M⁰ X molecules of structural type **C** nonequivalent linkages of M' to the C_{α} and C_{β} acetylide carbon atoms ($PtC_{\alpha} \equiv C_{\beta}$) are characteristic [1,7–11,14] is even more pronounced in **6** and **7** [12,14].

Compounds similar to **6** and **7** can be prepared, when $L_2Pt(C=CR)_2$ (R = Ph: **1c**, L_2 = dppe, dppe = diphenylphosphinoethane; **1d**, $L = PPh_3$; **1e**, $L =$ PEt₃; R = 'Bu: **1f**, L₂ = dppe; **1g**, L = PPh₃) is reacted with **2** or **3** in a 2:1 molar ratio [1,7b,15]. The respective trinuclear species ${[L_2Pt(C=CR)_2]_2M'}X (M'=$ Cu: **6c**, $L_2 =$ dppe, $R = Ph$, $X = BF_4$; $M' = Ag$: **7g**, $L = PPh_3$, $R = Ph$, $X = ClO_4$; **7h**, $L = PEt_3$, $R = Ph$, $X = ClO_4$; **7i**, $L_2 =$ dppe, $R = Ph$, $X = ClO_4$; **7j**, $L =$ PPh_3 , R = ^tBu, X = ClO₄; **7k**, L₂ = dppe, R = ^tBu, X = ClO4) were obtained in excellent yield.

When **1c** is treated with $\text{[Cu}(MeC = N)_{4} \text{]}BF_{4}$ (**2a**), ionic $[(\text{dppe})Pt(C=CPh]$ ₂}Cu(MeC=N)⁻ BF_4 (4c) is initially formed, which rearranges in a mixture of acetone–acetonitrile to give trinuclear ${[(\text{dppe})Pt(C=CPh)_2]_2Cu}BF_4$ (6c) [7b,15].

A further possibility to synthesize complexes **6** and **7** is given by reacting **1** with **4** or **5**, respectively, in a 1:1 molar ratio [12,14]. Within these reactions two different mechanism take place (**6**: Scheme 1, **7**: Scheme 3). In the reaction of, for example, $[\{cis-[Pt](C=CPh)_2\}Cu(N=CMe)]BF_4(4a)$ with cis -[Pt](C=CPh)₂ (1a), first ionic 8a is formed in which the copper(I) ion is π -bound by one PhC=C ligand of each *cis*-[Pt] $(C=CPh)$, array, thus giving rise to the formation of a linear alkyne-copper-alkyne $[(\eta^2 -$ PhC=C)₂Cu]⁺ moiety (alkyne = midpoint of the C=C triple bond) (Scheme 1).

Molecule **8a** can be considered as an intermediate in the formation of **6a** and hence, upon heating, it smoothly rearranges to afford **6a** (Scheme 1) [12,14].

Furthermore, it could be demonstrated that **6a** also represents a promising starting material for the synthesis of the tetrametallic Pt_2Cu_2 complex **9** as outlined in Scheme 1. In **9** two bis(alkynyl) platinum moieties are linked by copper ions in such a way that two $PhC = C$ units, one associated with each platinum atom, are η^2 -coordinated to a copper(I) cation [12a,14]. Both platinum atoms are thereby orientated on the same side as it could be evidenced by X-ray single structure analysis [12a,14]. The copper ions are not interacting with each other.

A further possibility to synthesize [{*cis*- $[Pt](C = CPh)_{2}^{2}Cu_{2}[(BF_{4})_{2}(9)$ is given in Scheme 2.

SCHEME 1 Synthesis of **6a** by the reaction of **4a** with **1a** [12,14].

Upon treatment of $4a$ with PPh₃ (10) substitution of the weakly bound N=CMe ligand in 4a occurs and $[\{cis-[Pt](C=CPh)_2\}Cu(PPh_3)]BF_4(11)$ is formed immediately, which on elimination of **10** produces by prolonged stirring tetrametallic **9** (Scheme 2) [12,14].

Isostructural complexes of **6a–6c** can be prepared by the reaction of $\{cis$ -[Pt](C=CPh)₂}AgX (5a: $X = FBF_3$, **5b**: $X = OClO_3$, **5c**: $X = FPF_5$) with **1a** or **1b**, respectively [12b,14]. However, in the synthesis of **7a–7f** another mechanism was discovered (Scheme 3).

As shown in Scheme 3, the first step in the preparation of, for example **7a**, involves the elimination of

SCHEME 2 Synthesis of **9** by reacting **4a** with **10**.

BF4 from **5a** by the addition of the organometallic chelate *cis*-[Pt](C=CPh)₂ (1a). Initially formed [{*cis*- $[Pt](C = CPh)_{2}$ ₂Ag]BF₄ (12) contains, as result of a X-ray structural analysis, two *cis*-[Pt] $(C=CPh)_2$ units which are η^2 -coordinated to a silver(I) cation *via* the PhC=C groups; as counter ion BF_4^- is present [12b,14]. The two *cis*-[Pt](C=CPh)₂ arrays are parallely orientated to each other with the platinum atoms on the opposite site [12b,14].

Complex **12** isomerizes in solution to produce **13** and then **14**, which afterwards rearranges to form **7a** (Scheme 3). IR spectroscopic studies give the first hint for the different bonding modes of the respective alkynyl groups present in **5a, 7a**, and **12–14** [1,7b,10–15]. This finding could additionally be confirmed by single X-ray structure determinations [12,14]. For example, the silver atom in **13** is embedded between two cis-arranged $[Pt]$ (C $=$ CPh)₂ units. Within this structural arrangement, however, the silver(I) ion interacts with both platinum centers $[Pt-Ag 2.8966(3) \text{Å}].$ In addition, the silver atom preferentially binds to the α -atoms of the Pt($C_{\alpha} \equiv C_{\beta}Ph$)₂ building blocks, giving rise to a bonding situation that best can be explained by μ -bridging PhC=C moieties. This bonding situation is favored by the Ag–C_{α} [2.443(6), 2.548(6) A] and Ag–C_β distances $[2.799(6), 3.042(6)$ Å] [12b,14]. A similar bonding situation is found in **14** [12b,14]. Half of the molecule corresponds to the latter bonding motif, while the other *cis*-[Pt] $(C=CPh)$ ₂Ag fragment resembles to a structural arrangement typical of **7** (Scheme 3) (vide

SCHEME 3 Synthesis of **7a** by the reaction of **1a** with **5a** [10].

supra) [7b,12,14]. In the latter unit the transition metals platinum and silver, the sp hybridized carbon atoms, and the C-ipso atom of the $Ph_{\text{c} = c}$ ligands are thereby in-plane bound $(r.m.s.d. 0.0196 \text{ Å}]$ [12,14].

In trimetallic **7a–7c** the cation [{*cis*- $[Pt](C \equiv CPh)_2$ ₂Ag]⁺ is set-up by two nearly orthogonal positioned bidentate cis -[Pt](C=CPh)₂ entities connected through silver(I) [12b,14]. The silver atom is thereby π -bound by all four PhC=C building blocks of the two $[Pt]$ (C=CPh)₂ arrays. Unlike heterobimetallic platinum–silver and platinum–copper complexes (type **C** molecules) (vide supra), the silver ion in structurally characterized **7a–7c** lies only slightly out of the best *cis*-[Pt]($C = CPh$)₂ plane to minimize steric interactions. Similar observations were made for analogous complexes, featuring instead of bipy or bipy' groups, phosphino ligands [1,7b,15]. It is common for all such systems to adopt a asymmetric structure in the solid state, as evidenced by the platinum–silver distances [e.g., **7g**: $Ag \cdots Pt(1)$ 3.384(1) \dot{A} , $Ag \cdots Pt(2)$ 3.513(1) \dot{A}]. The silver(I) center lies much closer to the platinum alkynyl plane for $Pt(2)$ (0.01 Å) than that for $Pt(1)$ (0.80 Å) [15].

Heteroatomic $Pt₂Ag₂$ assemblies featuring two ${cis}$ -[Pt](C=CPh)₂}AgX entities, which are connected *via* platinum–silver interactions, could recently be synthesized by the reaction of $1a$ with $[AqO_2CCF_3]$ (**3d**) in a 1:1 molar ratio (Fig. 1) [11c,14]. Dimeric $[\{cis\text{-}[Pt](\text{C=CPh})_2\}Ag(O_2CCF_3)]_2$ (15) could be isolated in excellent yields.

A further possibility to synthesize an oligonuclear complex, for example, $[\{cis-[Pt](C=CPh)_2\}$ ₂ $Cu_2]$ $(BF_4)_2$ (16), is given by controlling the stoichiometry of the respective reactants [13,14]. Thus, treatment of 3 equiv. **1b** with two parts of **2a** produces pentametallic **16** (Scheme 4). In addition, **16** can also be synthesized by the reaction of $[\{cis-[Pt](C=CPh)_2\}Cu(MeC=N)]BF_4$ (4b) $\{[Pt]=$ $(bipy')Pt$ } with $[\{cis-[Pt](C=CPh)_2\}_2Cu]BF_4$ (8b) in a 1:1 molar ratio [13]. In **16** three *cis*-[Pt](C=CPh)₂ fragments are spanned by two copper(I) ions.

A possible mechanism for the formation of **16** is outlined in Scheme 5 and is based on the intermediate formation of **8b, 17b, 18b**, and **6b**; molecules of the latter type has been discussed in detail earlier (vide supra) [12,13].

The result of the X-ray structure determination of **16** is shown in Fig. 2 and demonstrates that **16** consists of three helically arranged bis(alkynyl) platinum building blocks [13].

The dicationic Pt_3Cu_2 unit of 16 is formed by three neutral cis -[Pt]($C = CPh$)₂ fragments, which are spanned by two copper(I) ions, including all

FIGURE 1 Synthesis of **15** by the reaction of **1a** with **3d** [11c, 14].

SCHEME 4 Synthesis of **16** by reaction of **1b** with **2a** or **8a** with **4b** $\{[Pt = (bipy')Pt\}.$

six acetylide ligands and the platinum(II) centers. As counterions noncoordinating BF_4^- units are present. Within the $[Pt_3Cu_2]^{2+}$ array the outer *cis*- $[Pt](C=CPh)_2$ building blocks are bound to a Cu⁺ ion in such way that one of the two $PhC = C$ ligands is η^2 -coordinated, while the other one preferentially forms a σ -bond with the C_{α} atom of the Pt-C_{α}=C_{β} fragment (Fig. 2). These two units are linked by a third cis -[Pt](C=CPh)₂ entity of which the alkynyl ligands are unsymmetrically π -coordinated to the outer ${[Pt](C=CPh)_2}Cu^+$ building blocks (vide supra). In addition, metal–metal interactions between the transition metals platinum and copper are found [13].

SCHEME 5 Possible mechanism for the formation of 16 { $[Pt] = (bipy')Pt$ }.

FIGURE 2 ZORTEP PLOT (50% probability level) of the molecular structure of **16** [13]. Selected interatomic distances (\hat{A}) and angles $(^\circ)$ are Pt(1)-N(1) 2.095(9), $Pt(1) - N(2)$ 2.049(10), $Pt(2) - N(3)$ 2.078(9), $Pt(2) - N(4)$ $2.037(10)$, Pt(3) $-N(5)$ 2.073(9), Pt(3) $-N(6)$ 2.046(10), $Pt(1)$ $-C(1)$ 1.973(13), $Pt(1)$ $-C(9)$ 1.983(13), $Pt(3)$ $-C(57)$ 1.991(14), Pt(3)-C(65) 1.956(14), Cu(1)-Pt(1) 2.7856(16), $Cu(1) - Pt(2)$ 2.9742(16), $Cu(2) - Pt(2)$ 2.9981(16), $Cu(2)$ -Pt(3) 2.7625(17), $Cu(1)$ -C(1) 2.238(13), $Cu(1)$ -C(9) 2.092(11), $Cu(1)$ –C(10) 2.414(13), $Cu(2)$ –C(57) 2.013(12), $Cu(2)$ - $C(65)$ 2.369(12), $C(1)$ - $C(2)$ 1.218(16), $C(1)$ - $C(2)$ 1.225(16), C(57) C(58) 1.188(16), C(65) C(66) 1.192(16); $N(1) - Pt(1) - N(2)$ 79.8(4), $N(3) - Pt(2) - N(4)$ 79.7(4), $N(5) - Pt(3) - N(6)$ 78.6(4), $N(1) - Pt(1) - C(1)$ 172.2(4), $N(2) - Pt(1) - C(9)$ 175.1(5), $N(1) - Pt(1) - C(9)$ 97.1(5),
 $N(2) - Pt(1) - C(1)$ 94.6(5), $N(3) - Pt(2) - C(29)$ 172.6(4), 94.6(5), $N(3)$ - $Pt(2)$ - $C(29)$ 172.6(4), $N(4) - Pt(2) - C(37)$ 174.3(4), $N(3) - Pt(2) - C(37)$ 95.5(4), $N(4)$ - Pt(2) - C(29) 93.3(4), $N(5)$ - Pt(3) - C(57) 174.5(4),
 $N(6)$ - Pt(3) - C(65) 176.8(5), $N(5)$ - Pt(3) - C(65) 98.9(5), 176.8(5), N(5) - Pt(3) - C(65) 98.9(5),
98.6(5), N(1) - Pt(1) - C(9) 97.1(5), $N(6) - Pt(3) - C(57)$ 98.6(5), $N(1) - Pt(1) - C(9)$ 97.1(5), $Pt(1)$ - C(1) - C(2) 169.1(11), $Pt(1)$ - C(9) - C(10) 175.9(11), $Pt(2)$ - C(29) - C(30) 171.4(9), Pt(2) - C(37) - C(38) 173.6(11), $Pt(3)$ - C(57) - C(58) 171.3(11), Pt(3) - C(65) - C(66) $174.0(11)$, $C(1)$ $-Pt(1)$ $-C(9)$ 88.0(5), $C(29)$ $-Pt(2)$ $-C(37)$ $91.6(4)$, $C(57)$ $-Pt(3)$ $-C(65)$ 83.8(5).

Reaction Behavior of trans- $(Ph_3P)_2Pt(C = CPh)_2$

As shown in the preceding section, cis-configurated bis(alkynyl) platinum species can successfully be used as basic components for the construction of heterobimetallic and oligomeric complexes featuring up to five late transition-metal atoms. However, changing from *cis*- to *trans*-bis(alkynyl) platinum systems such as *trans*-L₂Pt(C=CR)₂ (19a: L = PPh₃, R = Ph; **19b**: $L = PMe_2Ph$, $R = {}^{t}Bu$; **19c**: $L = PMe_2Ph$, $R =$ H) novel linear coordination polymers are accessible, when **19a–19c** are reacted with various group 11 metal salts [M'X] ($M' = Cu$, Ag; $X = Cl$, Br, OTf, BF_4 , ClO_4 , ...) [1,7,14,17–23]. For other coordination polymers, featuring transition-metal centers other then platinum and copper or platinum and silver, see Ref. [23].

The reaction of *trans*-(Ph_3P)₂Pt($C = CPh$)₂ (19a) with the copper halides $\left[\text{CuX} \right]$ (2b: X = Cl, 2c: X = Br) in a 1:2 molar ratio affords the coordination polymers $(\text{Ph}_3\text{P})_2\text{Pt}(\text{C=CPh})_2\text{Cu}_2\text{X}_2$ (**20a**: X = Cl, **20b**: X $=$ Br) [14,19].

In these species a linear polymeric structure is adopted by the fragments *trans*-Pt(μ - σ , η ²-C=CPh)₂ and $Cu(\mu-X)_2Cu$ [19]. Exemplary, the solid-state structure of **20b** is shown in Fig. 3 [14,19].

In **20**, each copper atom is η^2 -coordinated by an alkyne group, to give a *cis*oide arrangement of the Pt-C=C-Ph unit, which is the reverse of the situation found for the respective cis-configurated heterobimetallic complexes as outlined in the preceding section (molecules of structural type **C**), where the Pt-C $=$ C-C_{Ph} units are trans-bent. In addition, the copper atoms in **20** are linked through double-halide bridges to each other to link the system into a linear polymeric chain. In the $Cu_2(\mu-X)_2$ cycles $(X = Cl, Br)$ the respective metal atoms possess a trigonal planar environment, caused by the two halides X and the symmetrically side-on bound $C_{Ph}C \equiv C$ units. However, because of sterical effects, the $Cu₂X₂$ entities are divided from planarity. This differs from other wellknown complexes of general type $(\eta^2$ -alkyne)₂Cu₂X₂ [alkyne = organic or organometallic group, such as $Me₃SiC = CSiMe₃$ [24], $C₁₀H₁₆S₂$ [25], $Me₃SiC = CPh$ [26], $(\eta^5$ -C₅H₅)(CO)₂Fe(C=CPh) [27]; C₁₀H₁₆S₂ = 3,3,6,6-tetramethyl-1-thia-4-cycloheptene; $X = Cl$, Br] in which the $Cu(\mu-X)_2Cu$ linkages are in-plane orientated.

As typical for the structure in the solid-state, also in solution a trans-arrangement of the bis(alkynyl) platinum array is characteristic [14,19].

A similar polymer, *trans*-[{(PhMe₂P)₂Pt- $(C=C^tBu)₂$ }Cu₂(μ -Cl)₂]_n (**20c**), is accessible by the linear copolymerization of *trans*- $(PhMe₂P)₂Pt (C=C^tBu)₂$ (**1b**) with [CuCl] in presence of Et₂NH [7].

The polymeric structure of **20a** and **20b** can be broken down to trimetallic species, when they

FIGURE 3 ZORTEP PLOT (50% probability level) of the molecular structure of **20b** (symmetry generated atoms are marked with the suffix a (symmetry code $-x + 1$, $-y$, $-z$) and b (symmetry code $-x + 1$, $-y - 1$, $-z + 1$)). [14,19] Selected interatomic distances (A) and angles (\degree) are Pt(1)-C(1) 2.024(7), Pt(2)-C(27) 2.024(7), Cu(1)-C(1) 2.037(7), Cu(1) - C(2) 2.022(8); Cu(1) - Br(1) 2.4135(12), Cu(1) - Br(2) 2.4272(12), Cu(2) - Br(1) 2.4136(12), Cu(2) - Br(2) 2.4272(12), Cu(2)-C(27) 2.082(7), Cu(2)-C(28) 2.089(8), C(1)-C(2) 1.212(10), C(27)-C(28) 1.223(10); P(1)-Pt(1)-P(1a) 180.00(9), P(1) Pt(1) P(1a) 180.00(8), Cu(1) Br(1) Cu(2) 79.05(4), Cu(1) Br(2) Cu(2) 78.50(4), Cu(1) C(1) C(2) 72.0 (5) , Cu(2) -C(27) -C(28) 73.3 (5), Pt(1) -C(1) -C(2) 164.7(7), Pt(2) -C(2) -C(28) 172.8(6).

are reacted with, e.g. the silver (I) salts $[AgX']$ (**3a**: $X' = BF_4$, **3b**: $X' = ClO_4$) in acetonitrile solutions [14,19]. Upon precipitation of AgX $(X =$ Cl, Br) the PtCu₂ complexes $\{trans-(Ph_3P)_2Pt[(\eta^2-P_1)]\}$ $C = CPh)Cu(N = CMe)_{2}l_{2}X_{2}$ (21a: X = BF₄, 21b: $X = ClO₄$ are formed in quantitative yield [14,19].

Molecules of structural type **21** can also be synthesized by treatment of $trans-(Ph_3P)_2Pt(C=Ch)_2$ **(19a)** with two equivalents of $\text{[Cu(N=CMe)₄]}X$ (2a: $X = BF_4$, **2d**: $X = ClO_4$, a reaction behavior which is typical for inorganic copper(I) species, except copper(I) halides [14,19,28].

Complexes **21a** and **21b** were characterized by spectroscopy (IR, NMR, MS) and single X-ray structure analysis [14,28].

The synthesis method for **21a** and **21b** can be transferred to other groups X, such as $NO₂$ and $NO₃$ [28]. However, in the so formed complexes *trans*- $(Ph_3P)_2Pt[(\eta^2-C=CPh)CuX]_2$ (22a: X = O₂N, 22b: X $=$ O₂NO) the nitrite and nitrate ligands are chelatebound via their oxygen atoms to the copper(I) center [28].

Isostructural complexes to **22a** and **22b** are accessible when **19a** is reacted with the appropriate silver(I) salts AgX (3d: $X = NO_2$, 3e: $X = NO_3$) [14,29].

In contrast, changing from $X = NO₂$ or $NO₃$ to $X = \text{OTf}, \text{BF}_4, \text{ClO}_4$ etc., novel coordination polymers can be obtained in which X as well as the PhC $=$ C and the $Ph₃P$ moieties are responsible for the construction of the respective polymeric chain.

One of the first examples on that score was reported by Yamazaki et al., who obtained polymeric $\{[trans-(PhMe₂P)₂Pt(C=CH)₂]\text{AgClO}₄\}$ _n (23) by the reaction of **19c** with $[AgClO₄]$ (**3b**) in a 1:1 molar ratio [17]. This coordination polymer was structurally characterized by X-ray structural determination [17]. The polymeric chain is set-up by the η^2 coordination of PtC=CH units to a $AgOClO₃$ building block as outlined in Fig. 4. The perchlorate is thereby σ -bound to the silver(I) center.

While in the reaction of **19c** with [AgClO₄] (**3b**) selectively coordination polymer **23** is formed (vide supra), the reaction of **19a** with the same reagent leads to $\{[trans-(PPh_3)_2Pt(C=CPh)_2]\}$ $[Ag(\mu\text{-}OCl(O)_2O)Ag]\}$ _n (24) and $\{[trans-(PPh_3)_2Pt (C = CPh)AgOClO₃]₂$ ⁿ (25a, 25b). These species differ in the bonding modes of the linking silver perchlorate units and contain two silver atoms per platinum element (Figs. 5–7) [20]. It must be noted that the formation of **24** and **25** strongly depends on the reaction conditions applied (temperature, solvent,...) [20].

From **24, 25a**, and **25b** single crystals could be obtained. The result of the X-ray structure analysis of these polymers is shown in Fig. 5 (**24**), Fig. 6 (**25a**), and Fig. 7 (**25b**) [14,20].

In **24** the linking of the *trans*- $(Ph_3P)_2Pt(C=Ch)_2$ fragments is achieved by $Ag[\mu\text{-}OCl(O_2)O]_2Ag$ cycles, which are η^2 -coordinated by the PhC=C groups of individual Pt(C=CPh)₂ moieties. In addition, η^2 bonding of one phenyl group of a triphenylphosphine ligand results in the coordination number 4 at silver, thus giving rise to an 18-valence electron count around the group 11 metal (Fig. 5).

The parallel orientation of individual $Pt(C = CPh)$ ₂ units in **24** also dominates the structure of **25a** (Fig. 6) [14,20].

In contrast to **24**, where perchlorate groups span the respective $[trans-(PPh₃)₂Pt(C=CPh)₂]$ Ag

FIGURE 5 Molecular structure (top) and schematic representation (below) of 24 ; selected bond lengths (A) and angles $(^\circ)$ are as follows [14,20]: Pt(1)–C(1) 2.004(8), C(1)–C(2) 1.224(11), C(1) Ag(1) 2.416(11), C(2) Ag(1) 2.386(8), Ag(1)—O(1) 2.466(11), Pt(1)—P(1) 2.3213(18), O(1)—Cl(1) 1.466(10), Ag(1)-O(2a) 2.382(11); C(1)-Pt(1)-C(1a) 180.000(3), $P(1) - P(t) - P(1a)$ 180.00(1), $P(t) - C(1) - C(2)$ $174.2(7)$, $C(1)$ $-Ag(1)$ $-C(2)$ $29.5(3)$, $O(1)$ $-Ag(1)$ $O(2a)$ 92.7(5), $Ag(1)$ -O(1)-Cl(1) 114.1(6), O(1)-Cl(1)-O(2) 105.6(7).

units, in $25a$ (Fig. 6) the $ClO₄$ building blocks are terminal bound to the silver(I) center. To create a tetrahedral surrounding around silver and hence, to reach the 18-valence electron count, additional η^2 -coordination of a phenyl group of the $(Ph_3P)_2Pt(C\equiv CPh)_2$ units must occur (Fig. 6) [14,20].

Almost the same arrangement is found in **25b**, except that the silver(I) center is slipped along the surface of the phenyl ring and hence, an zigzag arrangement is characteristic (Fig. 7) [14,20].

The same structural motif (polymers **25a** and **25b**) is present in $\{[trans-(PPh_3)_2Pt(C=CPh)_2]\}$ $[AgFBF_3]_2$ ⁿ (26), which selectively is produced by the addition of 2 equiv. of [AgBF4] (**3a**) to **19a** [14,22].

However, when *trans*-(PPh₃)₂Pt(C=CPh)₂ (19a) is reacted with 2 equiv. of [AgOTf] (**3f**) (OTf $=$ OSO₂CF₃) polymeric {[*trans*-(PPh₃)₂Pt(C=CPh)₂]- $[AgOTf]_2$ _n (27) is formed. In 27 the OTf moiety acts as a bridging unit between [*trans*- $(PPh_3)_2Pt(C=CPh)_2[Ag$ building blocks [14,21]. From elemental analysis it is obvious that polymeric **27**

FIGURE 6 Molecular structure (top) and schematic representation (below) of 25a; selected bond lengths (Å) and angles ([°]) are as follows [14,20]: Pt(1)-C(1) 2.009(3), C(1)-C(2) 1.209(5), C(1)-Ag(1) 2.345(3), C(2)-Ag(1) 2.377(4), Ag(1)-O(1) 2.458(3), Pt(1)—P(1) 2.3218(8), O(1)—Cl(1) 1.460(3), O(1)—Cl(2) 1.429(3), O(1)—Cl(3) 1.430(4), O(1)—Cl(4) 1.425(4), C(1)—Pt(1)—C(1a) 180.0, P(1)-Pt(1)-P(1a) 180.0, Pt(1)-C(1)-C(2) 172.6(3), C(1)-Ag(1)-C(2) 29.67(12), C(1)-Ag(1)-O(1) 116.73(11), $C(2)$ - Ag(1) - O(2) 146.24(11), P(1) - Pt(1) - C(1) 91.11(9).

contains two silver atoms, being consistent with the formula $(\text{Ph}_3\text{P})_2\text{Pt}(C_2\text{Ph})_2\text{Ag}_2(\text{Off})_2$. IR spectroscopic studies reveal that in $27a \mu$ -bridging triflate is present, attributing to $Ag[\mu-OS(O)(CF_3)O]Ag$ eightmembered cycles.

The structural arrangement found in solution is also retained in the solid state and corresponds to the structural motif already discussed for **24** (vide supra) (Fig. 8) [14,21].

The polymeric structure of **27** is created by $(Ph_3P)_2Pt(\mu-\sigma,\eta^2-C={\rm CPh})_2$ and $Ag[\mu-\sigma,\eta^2+C={\rm CPh})_2$ $OS(O)(CF₃)O₂Ag$ units of which the latter moiety represents the linking group [14,21]. It is interesting to note that in **27** the eight-membered $Ag[\mu-OS(O)(CF_3)O]_2Ag$ cycles are "concave–convex" arranged and hence form a zigzag chain (Fig. 8). One should mention that the formation of such bridging entities is not common in group 11 triflate chemistry [30]. Similar orientations were found in, e.g. $\{[(R^1)(R^2)(PhC=C)P]Ag(\mu-OSO_2CF_3)\}_2$ $(R¹=OC₆H₂^tBu₃-2,4,6; R²=NEt₂, Ph, PhC=C)$ [30].

Recently, Fornies and co-workers demonstrated that polynuclear complexes of composition $[(C_6F_5)_2Pt(C\equiv CR)_2Ag_2]_n$ (28a: R = Ph; 28b: $R = {}^{t}Bu$) could be obtained by reacting either tetranuclear $(NBu_4)_{2}[(C_6F_5)_{4}Pt_2(C=CR)_{4}Ag_2]$ (29) or $(NBu_4)_2[cis-Pt(C_6F_5)_4(C=CR)_2]$ (30) with [AgClO₄] (3b), or $cis-Pt(C_6F_5)_2(Thf)_2$ with $[Ag(C=CR)]_n$ $(R = Ph, 'Bu)$ (Pt/Ag ratio 1:2) in acetone [31]. Dissolving **28b** in acetone affords $[(C_6F_5)_2Pt$ $(C=C^tBu)₂Ag₂(CH₃COMe)₂]₂$ (31), which reverts to **28b** on air drying [18,31].

FIGURE 7 Molecular structure (top) and schematic representation (below) of 25b; selected bond lengths (A) and angles (°) are as follows [14,20]: Pt(1)-C(1) 2.000(4), C(1)-C(2) 1.220(6), C(1)-Ag(1) 2.346(4), C(2)-Ag(1) 2.367(5), Ag(1) O(1) 2.579(3), Pt(1) P(1) 2.3262(12), O(1) Cl(1) 1.453(3), O(1) Cl(2) 1.409(4), O(1) Cl(3) 1.423(5), O(1) Cl(4) 1.424(4); C(1)-Pt(1)-C(1a) 180.00(19), P(1)-Pt(1)-P(1a) 180.0, Pt(1)-C(1)-C(2) 171.0(4), C(1)-Ag(1)-C(2) 30.01(15), $C(1)$ -Ag(1) -O(1) 111.51(13), $C(2)$ -Ag(1) -O(2) 140.88(13), P(1) -Pt(1) -C(1) 89.93(13).

Complex **31** displays two identical $\{(C_6F_5)_2Pt(\mu C \equiv C^{t}Bu_{2}$ }Ag(Me₂CO)₂ building blocks, which are linked by two silver atoms [18,31]. The polymeric structure of $[(C_6F_5)_2Pt(C=CR)_2]Ag_2]_n$ (28a, **28b**) is thought to be based on square-planar *cis*- $(C_6F_5)_2Pt(C=CR)_2$ entities, which are connected by silver atoms η^2 -bound by the RC=C ligands [18]. Moreover, it was found that on treatment of **28a** or **28b** with the 2-electron donors L $(L = PPh_3)$, $P(C_2H_5)_3$, $C \equiv N^tBu$, C_5H_5N ,...) two new types of platinum–silver complexes are formed, depending on the silver-to-ligand molar ratio used. When 1 equiv. of L per silver atom is added, trimetallic ${ (C_6F_5)_2Pt(C=CR)_2 {(AgL)_2 [R = Ph: 32a: L = PPh_3,}$ **32b**: $L = P(C_2H_5)$, **32c**: $L = C=N^tBu$, **32d**: $L =$ C_5H_5N ; R = ^tBu: **32e**: L = PPh₃, **32f**: L = P(C_2H_5)₃,

32g: $L = C \equiv N^t B u$, **32h**: $L = C_5 H_5 N$] is produced. However, when a 1:2 molar ratio is applied, hexametallic ${ (C_6F_5)_2Pt(C\equiv CR)_2\}Ag_2(AgL)_2$ (R = Ph: 31a: $L = PPh_3$, **31b**: $L = P(C_2H_5)_3$, **31c**: $L = C \equiv N^tBu$, **31d**: $L = C_5H_5N$; $R = {}^tBu$: **31e**: $L = PPh_3$, **31f**: L $= P(C_2H_5)_{3}$, **31g**: $L = C=N^tBu$, **31h**: $L = C_5H_5N$) is formed [18,31].

NMR spectroscopic studies show that the transconfigurated $Pt(C = CPh)$ ₂ fragments in **20–27** are maintained in solution. However, when electron donating solvent molecules (also see reaction of **28** with neutral 2-electron donor ligands) are added, the polymeric arrangement in **20–27** is disrupted to form oligomeric or even monomeric structures. This also occurs, when, for example, **26** is reacted with chelating Lewis-bases such as bipy. Trimetallic

FIGURE 8 ZORTEP PLOT (30% probability level) of the molecular structure (top) and schematic representation (below) of **27** (symmetry generated atoms are labelled with the suffix a, (symmetry code −^x + 1, −y + 1, −^z) and b (symmetry code $-x + 1$, $-y + 1$, $-z + 1$)), selected bond lengths (Å) and angles (\circ) are as follows [14,21]: Pt(1) C(1) 1.996(7), Pt(1) C(27) 2.002(8), C(1) C(2) 1.240(10), C(27) C(28) 1.224(11), Ag(1) C(1) 2.323(7), Ag(1) C(2) 2.322(9), Ag(2) C(27) 2.322(8), Ag(2) C(28) 2.328(8), Ag(1) O(1) 2.321(7), Ag(2) O(2) 2.270(6), Ag(1) O(5) 2.266(5), Ag(2) O(4) 2.345(6), O(1) S(1) 1.409(7), O(2) S(1) 1.432(6), O(4) S(2) 1.355, O(5) S(2) 1.461(7); Pt(1) C(1) C(2) 172.0(7), Pt(2)—C(27)—C(28) 173.1(7), C(1)—Pt(1)—C(1a) 180.0(3), C(27)—Pt(2)—C(27a) 180.000(2), O(1)—Ag(1)—O(5) 92.6(3), O(2) $\overline{O(4)}$ $\overline{O(4)}$ 88.9(2), Ag(1) $\overline{O(1)}$ $\overline{O(1)}$ 137.3(4), Ag(1) $\overline{O(5)}$ S(2) 153.8(5).

33 is thereby produced in quantitative yield [14,22].

REFERENCES

- [1] (a) Lang, H.; George, D. S. A.; Rheinwald, G. Coord Chem Rev 2000, 206–207, 101; (b) Lang, H.; Rheinwald, G. J Prakt Chem 1999, 341, 1; (c) Lang, H.; Weinmann, M. Synlett 1996, 1; (d) Lang, H.; Köhler, K.; Blau, S. Coord Chem Rev 1995, 143, 113.
- [2] For further reviews on transition metal-acetylide chemistry see: (a) Manners, I. Angew Chem Int Ed Engl 1996, 37, 219; (b) Beck, W.; Niemer, B.; Wiesner, M. Angew Chem Int Ed Engl 1993, 32, 923; (c) Erker, G. Comments Inorg Chem 1992, 13, 111; (d) Bruce, M. I. Chem Rev 1991, 91, 197; (e) Sappa, E.; Tiripicchio, A.; Braunstein, P. Chem Rev 1983, 83, 203; (f) Carty, A. J. Pure Appl Chem 1982, 54, 113; (g) Nast, R. Coord Chem Rev 1982, 47, 89; (h) Manna, I.; John, K. D.; Hopkins, M. D. Adv Organomet Chem 1995, 38,

79; (i) Yam, V. W. W.; Lo, K. K. W.; Wong, K. M. C. J Organomet Chem 1999, 578, 3; (j) Abu-Salah, O. M. J Organomet Chem 1998, 565, 211; (k) Low, P. J.; Enright, G. D.; Carty, A. J. J Organomet Chem 1998, 565, 279; (l) Ohff, A.; Pulst, S.; Lefeber, C.; Peulecke, N.; Arndt, P.; Burlakov, V. V.; Rosenthal, U. Synlett 1996, 111; (m) Lotz, S.; van Rooyen, P. H.; Meyer, R. Adv Organomet Chem 1995, 37, 219.

- [3] For theoretical work on ligand-bridged metal systems also see: (a) Kanis, D. R.; Lacroix, P. G.; Ratner, M. A.; Marks, T. J Am Chem Soc 1994, 116, 10089; (b) Sponsler, M. B. Organometallics 1995, 14, 1920; (c) Belanzoni, P.; Re, N.; Sgamellotti, A.; Floriani, C. J Chem Soc, Dalton Trans 1998, 1825; (d) Re, N.; Sgamellotti, A.; Floriani, C. J Chem Soc, Dalton Trans 1998, 2521; (e) Okamura, T.; Takano, Y.; Yoshioka, Y.; Keyama, N.; Nakamura, A.; Yamaguchi, K. J Organomet Chem 1998, 569, 177; (f) Jiao, H.; Gladysz, J. A. New J Chem 2001, 25, 551.
- [4] For electronic communications between ligandbridged metals see: (a) Creutz, C. Prog Inorg Chem 1983, 30, 1; (b) Creutz, C.; Taube, H. J Am Chem Soc 1969, 91, 3988; (c) Astruc, D. Acc Chem Res 1997, 30, 383; (d) Swager, T. M. Acc Chem Res 1998, 31, 201; (e) Ward, M. D. Chem Soc Rev 1995, 121; (f) Barlow, S.; O'Hare, D. Chem Rev 1997, 97, 637; (g) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. Adv Organomet Chem 1998, 43, 349; (h) Coe, B. J. Chem Eur J 1999, 5, 2464; (i) Lang, H. Angew Chem Int Ed Engl 1994, 33, 547; (j) Coat, F.; Lapinte, C. Organometallics 1996, 15, 477; (k) Weng, W.; Ramsden, J. A.; Arif, A. M.; Gladysz, J. A. J Am Chem Soc 1993, 115, 3824; (l) Bullock, M. R.; Lemke, F. R.; Szalda, D. J. J Am Chem Soc 1990, 112, 3244; (m) Bürger, H.; Kluess, C. J Organomet Chem 1973, 56, 269; (n) Razuvaev, G. A.; Domrachev, G. A.; Sharutin, V. V.; Suvorova, O. N. J Organomet Chem 1977, 141, 313; (o) Zakharov, L. N.; Struchkov, V. T.; Sharutin, V. V.; Suvorova, O. N. Cryst Struct Commun 1979, 8, 439; (p) Dias, A. R.; Salema, M. S.; Simoes, J. A. M. Organometallics 1982, 1, 971; (q) Wedler, M.; Roesky, H. W.; Edelmann, F. T. Z. Naturforsch Teil B 1988, 43, 1461; (r) Lemke, F. R.; Szalda, D. J.; Bullock, M. R. Z Naturforsch B 1991, 113, 8467; (s) Gu, X.; Sponsler, M. B. Organometallics 1998, 17, 5920; (t) Mitani, M.; Hayakawa, M.; Yamada, T.; Mukaiyama, T. Bull Chem Soc Jpn 1996, 69, 2967; (u) Qian, C.; Guo, J.; Sun, J.; Chen, J.; Zheng, P. Inorg Chem 1997, 36, 1286; (v) Müller, T. J. J.; Netz, A.; Ansorge, M.; Schmälzlin, E.; Bräuchle, C.; Meerholz, K. Organometallics 1999, 18, 5066; (w) Bunz, U. H. F. Angew Chem 1996, 108, 1047; (x) Siemsen, P.; Livingston, R. C.; Diedrich, F. Angew Chem Int Ed Engl 2000, 39, 2658; (y) Bildstein, B. Coord Chem Rev 2000, 206–207, 369.
- [5] (a) Back, S.; Gossage, R. A.; Rheinwald, G.; Lang, H.; van Koten, G. J Organomet Chem 1999, 582, 126; (b) Back, S.; Gossage, R. A.; Lang, H.; van Koten, G. Eur J Inorg Chem 2000, 1457; (c) Back, S.; Rheinwald, G.; Lang, H. Organometallics 1999, 18, 4119; (d) del Rio, I.; Back, S.; Hannu, M. S.; Rheinwald, G.; Lang, H.; van Koten, G. Inorg Chim Acta 2000, 300–302, 1044; (e) Back, s.; Frosch, W.; del Rio, I.; van Koten, G.; Lang, H. Inorg Chem Commun 1999, 2, 584; (f) Back, S.; Lang, H. Organometallics 2000, 19, 749;

(g) Back, S.; Albrecht, M.; Spek, A. L.; Rheinwald, G.; Lang, H.; van Koten, G. Organometallics 2001, 20, 1024; (h) Back, S.; Rheinwald, G.; Lang, H. J Organomet Chem 2000, 601, 93; (i) Lang, H.; Köcher, S.; Back, S.; Rheinwald, G.; van Koten, G. Organometallics 2001, 20, 1968; (j) Back, S.; Stein, Th.; Frosch, W.; Wu, I. Y.; Kralik, J.; Büchner, M.; Huttner, G.; Rheinwald, G.; Lang, H. Inorg Chim Acta 2001, 325, 94; (k) Köcher, S.; Lang, H. J Organomet Chem 2001, 637–639, 198; (l) Lang, H.; Stein, Th. J Organomet Chem 2002, 641, 41; (m) Köcher, S.; Lang, H. J Organomet Chem 2002, 641, 62; (n) Stein, Th.; Lang, H.; Holze, R. J Electroanal Chem 2002, 520, 163; (o) Weiß, Th.; Natarajan, K.; Lang, H.; Holze, R. J Electroanal Chem 2002, 520, 163; (p) Frosch, W.; Back, S.; Lang, H. Organometallics 1999, 18, 5725.

- [6] (a) Possner, G. H. An Introduction to Synthesis using Organo Copper Reagents; Wiley: New York, 1988; (b) Lang, H.; Frosch, W. In Selective Reactions of Metal-Activated Molecules; Werner, H.; Schreier, P. (Eds.); Vieweg: Brunswick, Germany, 1998; p. 177; (c) Frosch, W.; Back, S.; Köhler, K.; Lang, H. J Organomet Chem 2000, 601, 226; (d) Frosch, W.; Back, S.; Lang, H. J Organomet Chem 2001, 621, 143; (e) Frosch, W.; Back, S.; Rheinwald, G.; Köhler, K.; Pritzkow, H.; Lang, H. Organometallics 2000, 19, 4016; (f) Frosch, W.; Back, S.; Lang, H. J Organomet Chem 2001, 625, 140.
- [7] (a) Yamazaki, S.; Deeming, A. J. J Chem Soc, Dalton Trans 1993, 3051; (b) Yamazaki, S.; Deeming, A. J.; Hursthouse, M. B.; Malik, K. M. A. Inorg Chim Acta 1995, 235, 147.
- [8] Adams, C. J.; Raithby, P. R. J Organomet Chem 1999, 578, 178.
- [9] (a) Fornies, J.; Lalinde, E.; Martinez, F.; Moreno, M. T.; Welch, A. J. J Organomet Chem 1993, 455, 271; (b) Fornies, J.; Lalinde, E.; Martin, A.; Moreno, M. T. J Organomet Chem 1995, 490, 179; (c) Espinet, P.; Fornies, J.; Martinez, F.; Tomas, M.; Lalinde, E.; Moreno, T.; Ruiz, A.; Welch, A. J. J Chem Soc, Dalton Trans 1990, 791; (d) Charmant, J. P. H.; Fornies, J.; Gomez, J.; Lalinde, E.; Merino, R. I.; Moreno, M. T.; Orpen, A. G. Organometallics 1999, 18, 3353.
- [10] Lang, H.; del Villar, A.; Rheinwald, G. J Organomet Chem 1999, 587, 284.
- [11] Lang, H.; del Villar, A.; Rheinwald, G. J Organomet Chem 1999, 587, 284; (b) Lang, H.; del Villar, A.; Leschke, M.; Rheinwald, G. Organometallics (submitted); (c) Lang, H.; del Villar, A.; Rheinwald, G. J Organomet Chem (submitted).
- [12] (a) Lang, H.; del Villar, A.; Rheinwald, G. Organometallics (submitted); (b) Lang, H.; del Villar, A.; Rheinwald, G. Eur J Inorg Chem (in
- preparation).
[13] Lang, H.; del Villar, A.; Rheinwald, G. Organometallics (in preparation).
- [14] del Villar, A. PhD thesis; TU Chemnitz, Chemnitz.
- [15] Ara, I.; Berenguer, J. K.; Fornies, J.; Lalinde, E.; Moreno, M. T. J Organomet Chem 1996, 510, 63.
- [16] For selected compounds see: (a) Hayashi, Y.; Osawa, M.; Koboyashi, K.; Sato, T.; Sato, M.; Wakatsuki, Y. J Organomet Chem 1998, 569, 169; (b) Stein, Th.; Back, S.; Rheinwald, G.; Lang, H. J Organomet Chem (submitted).
- [17] Yamazaki, S.; Deeming, A. J.; Speel, D. M.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M. A. Chem Commun 1997, 177.
- [18] (a) Ara, I.; Fornies, J.; Lalinde, E.; Moreno, M. T.; Tomas, M. J Chem Soc, Dalton Trans 1994, 2735.
- [19] Lang, H.; del Villar, A.; Rheinwald, G. Acta Cryst Section C (in preparation).
- [20] Lang, H.; del Villar, A.; Rheinwald, G. J Chem Soc, Chem Commun (in preparation).
- [21] Lang, H.; del Villar, A.; Rheinwald, G. Inorg Chem Commun (submitted).
- [22] Lang, H.; del Villar, A.; Rheinwald, G. Dalton Trans (in preparation).
- [23] For other coordination polymers see for example: (a) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew Chem Int Ed Engl 1999, 38, 2639; (b) Kingsborough, R. P.; Swager, T. M. Prog Inorg Chem 1999, 48, 123; (c) Champness, N. R.; Schroder, M. Curr Opin Solid State Mater Sci 1998, 3, 419; (d) Chen, C. T.; Suslick, K. S. Coord Chem Rev 1993, 128, 293; (e) Archer, R. D. Coord Chem Rev 1993, 128, 49; (f) Dey, A. K. J Indian Chem Soc 1986, 63, 357; (g) Foxman, B. M. Encycl Polym Sci Engl 1985, 4, 175; (h) Jones, R. D. G.; Power, L. F. Proc Roy Anst Chem Inst 1968, 35, 338; (i) Wu, H. P.; Yaniak, Chr.; Rheinwald, G.; Lang, H. J Chem Soc, Dalton Trans 1999, 183.
- [24] (a) Aleksandrov, G. G.; Goldin, I. R.; Sterlin, S. R.; Sladkov, A. M.; Struchkov, Y. T.; Garbuzov, I. A.; Aleksanyara, V. T. Izv Akad Nauk SSSR, Ser Khim 1980, 2679; (b) Macomber, D. W.; Rausch, M. D. J Am Chem Soc 1983, 105, 5325; (c) Maier, G.; Hoppe, M.; Reisenauer, H. P.; Krüger, C. Angew Chem Int Ed Engl 1982, 21, 437.
- [25] (a) Olbrich, F.; Behrens, U.; Gröger, G.; Weiss, E. J Organomet Chem 1993, 448, C10; (b) Olbrich, F.; Behrens, U.; Weiss, E. J Organomet Chem 1994, 472, 365; (c) Olbrich, F.; Kopf, J.; Weiss, E. J Organomet Chem 1993, 456, 293.
- [26] (a) Back, S.; Stein, Th.; Lang, H. Acta Cryst Sect C (submitted); (b) Back, S.; PhD thesis; TU Chemnitz, Chemnitz, 2000.
- [27] Bruce, M. I.; Abu-Salah, O. M.; Davis, R. E.; Raghavan, N. V. J Organomet Chem 1974, 64, C48.
- [28] Lang, H.; del Villar, A.; Rheinwald, G. J Organomet Chem (in preparation).
Lang. H.; del Villar,
- [29] Lang, H.; del Villar, A.; Rheinwald, G. Organometallics (in preparation).
- [30] Lang, H.; Weinmann, M.; Winter, M.; Leise, M.; Imhof, W. J Organomet Chem 1995, 503, 69 and literature cited therein.
- [31] Fornies, J.; Gomesz-Saso, M. A.; Martinez, F.; Lalinde, E.; Moreno, M. T.; Welch, A. J. New J Chem 1992, 16, 483.